Project II : Rotary motor

The motion of a rotary motor is described by the overdamped Langevin equation

$$
\begin{equation*}
\gamma d \theta(t)=-\frac{d V(\theta)}{d \theta} d t+f_{0} d t+\sqrt{2 \gamma k_{B} T} d W(t) \tag{5.3}
\end{equation*}
$$

where $0 \leq \theta<2 \pi$ is the angular position of the motor, $V(\theta)=\cos \theta$ is the periodic potential, and f_{0} is a constant applied torque, and $W(t)$ denotes the Wiener process. One can set $\gamma=k_{B}=T=1$.
[1] Write down the corresponding Fokker-Planck equation for the probability distribution function $P(\theta, t)$ and solve it to find the stationary state distribution $P_{s S}(\theta)$. Compare it with the equilibrium Boltzmann distribution $P_{e q}(\theta)=\frac{1}{Z} e^{-\beta V(\theta)}$ without torque.
[2] The average angular velocity $\Omega=\lim _{t \rightarrow \infty} \frac{1}{t}\langle(\theta(t)-\theta(0))\rangle$ depends on the applied torque f_{0}. Draw the plot of Ω as a function of f_{0}. This can be done analycally or numerically.
[3] Initially $f_{0}=0$ and the system is prepared in the equilibrium state with $P_{e q}(\theta)$. At time $t=0$, the torque is turned to take the value $f_{0}=1$. Solve the Langevin equation numerically up to time $t=\tau$ and measure the work done by the external torque $W(\tau)=$ $\int_{0}^{\tau} f_{0} \dot{\theta}\left(t^{\prime}\right) d t^{\prime}$. By performing the numerical simulations many times, you can construct the probability distribution function for the work $P(W)$. Test the integral and detailed fluctuation theorems by computing $\left\langle e^{-W}\right\rangle$ and $P(W) / P(-W)$.

